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Abstract

Dissimilar materials are frequently used in industrial products, such as electronic devices, welded joints and

composite materials. Many investigations on two-dimensional joints so far have been carried out theoretically and
experimentally, although three-dimensional ones are rarely performed. In this paper, the order of stress singularity
at the corner where four free surfaces and the interfaces of the three-dimensional joints meet is investigated by
solving an eigenequation derived from a ®nite element formulation. The order of stress singularity for four typical

joints, referred to as the 1/8±1/8, 1/8±1/4, 1/8±1/2 joints and a joint with various vertex angles, consisting of two
blocks with di�erent properties is investigated. Dundurs' composite parameters, a3D and b3D, for three-dimensional
joints are newly introduced, and the order of stress singularity plotted on ordinary Dundurs' parameters, the a and

b plane, is rearranged on the a3D±b3D plane. The order of stress singularity at the vertex in the three-dimensional
joints is larger than that in the two-dimensional joints, although, the zero boundary of stress singularity varies little
on the a3D±b3D plane. Furthermore, it was shown that the order of stress singularity at a vertex, where some

singular lines with di�erent orders meet, varies with the combination of material properties. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Many investigations have been conducted so far concerning joints fabricated from materials with
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di�erent properties, in order to e�ectively utilize the feature of each material. Joint structures of bonded
metals and ceramics have been used widely in electric devices and mechanical parts. It is known from
previous studies that failure occurs and the reliability of the materials decreases due to the occurrence of
stress singularity at the cross-point of the free surface and the bonded plane. There are many pre-
existing cracks in ceramics, and in fact, fracture and delamination occur often around the vertex of
joints. Such problems cause the decrease of reliability of joints. Therefore, many studies on the
reduction of stress singularity have been carried out theoretically and experimentally (Koguchi et al.,
1994). Almost all these studies are focused on two-dimensional stress singularity (Barsoum, 1988; Bogy,
1971a,b; Cook and Erdogan, 1972; Dempsey and Sinclair, 1979; Fenner, 1976; Hein and Erdogan, 1971;
Koguchi et al., 1995; Theocaris, 1974; Yang and Munz, 1994). There is no evidence that these results are
applicable to three-dimensional joints. In a practical point of view of fracture mechanics and an
application of joints, an analysis of three-dimensional singularities would be very useful.

There are several investigations on the stress singularity ®eld in three-dimensional elastic materials.
Bazant (1974) ®rst developed a general numerical procedure for determining three-dimensional stress
singularities. Bazant and Kerr (1974) showed that a rigid conical inclusion induces much stronger
concentration at its vertex than a conical notch of the same size. Kerr and Parihar (1977, 1978)
investigated the three-dimensional stress concentrations at corners of stamps and pyramidal notches in
isotropic materials. Benthem (1977, 1980) examined the singularity exponent of the stress ®eld at the
corner point of the free surface with a crack front in a three-dimensional crack. Bazant and Estenssoro
(1979) extended the same method to determine the order of stress singularities for the previous study by
Benthem. Somaratna and Ting (1986) extended the ®nite element scheme developed by Bazant and
Estenssoro (1979) to incorporate general anisotropic elastic materials, and they investigated the order of
stress singularity in laminated composite materials. Several important investigations regarding the
accuracy of the method were made by Ghahremani (1991), Ghahremani and Shih (1992). Nakamura
and Parks (1988) investigated the three-dimensional stress state at the vicinity of a through-crack front
of an isotropic plate using a ®nite element method (FEM), and examined the corner stress intensity
factor and the dependence of stress singularity on Poisson's ratio near the intersection of the crack front
and free surface.

The stress ®eld with singularities is readily accommodated in brittle solids by defects or pre-existing
cracks. It is recognized that the stress concentration at grain triple junctions induced by thermal and
elastic anisotropies of the grains plays a major role in crack nucleation. Ghahremani et al. (1990)
analyzed the elastic anisotropy-induced stress concentrations at triple junctions in three dimensions, and
showed that the concentration e�ect in three-dimensions to be stronger than those obtained for plane
strain con®gurations. Picu and Gupta (1997) studies the stress singularity at the point of intersection of
a grain triple junction line with the free surface in single-phase polycrystals of cubic and hexagonal
grains using the special ®nite element method developed by Bazant (1974). They showed that the
singularity exponents obtained were somewhat di�erent and stronger in comparison with those obtained
for the corresponding two-dimensional plane stress and strain con®gurations.

Pageau and Biggers (1995) extended the FEM formulation developed by Yamada and Okumura
(1981) extended to account for anisotropy of materials. They investigated the three-dimensional
intersection of multi-material junction with a free surface by using the FEM formulation (Pageau et al.,
1994). They examined the in¯uence of the numbers of mesh division and of Gauss integration points
upon the accuracy of calculation. We performed analyses of three-dimensional joints using boundary
element method (BEM) and showed that the order of stress singularity at a vertex of three-dimensional
joints is stronger than that at a vertex of two-dimensional joints (Koguchi 1997; Li et al., 1992).

In contrast to these studies, relatively less attention has been given to the area of stress singularities in
bonded structure with a general con®guration. For example, a three-dimensional assembly of dissimilar
isotropic materials with several vertices is shown in Fig. 1. In the case of three-dimensional joints, the
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stress singularity occurs not only at the vertex but also along the intersection of the interface with the
free surface. We refer to this as the stress singularity line. The vertex of three-dimensional joints is
generally a cross-point of stress singularity lines with di�erent exponents of stress singularity.

We showed in the previous paper (Koguchi, 1997) that the stress ®eld around such a vertex consisted
of several free surfaces and an interface can be expressed as a power law with respect to r, the distance
from the vertex. Generally, the ®eld for a stress component, skl, near the vertex can be expressed, as
follows:

In the case of real number of the order of stress singularity,

skl �
X
j�1

rljF j
kl�f, y, lj � �1�

where f and y are angles in the spherical coordinates, F j
kl are a function of angles f, y and the jth order

of singularity.
In the case of complex number and real number of the order of stress singularity,

skl �
X
j�1

rl
R
j fF �jRkl �f, y, l�j � cos�lllI

j ln r� ÿ F �jikl �f, y, l�j � sin�lllI
j ln r�g �

X
j�1

rljF j
kl�f, y, lj � �2�

where l �j=lR
j +il I

j , F �jkl=F �jRkl +iF �jIkl is a complex function of angles f and y and of the order of
singularity. When ÿ1 < l1 < l2< . . . <0 or ÿ1 < Re(l �1) < Re(l �2)< . . . <0, the stress ®eld has a
stress singularity, and when lj>0 or Re(l �j ), the stress singularity disappears.

When we estimate the strength and reliability of joints, we have to know the order of stress
singularity and the functions, F j

kl or F �jkl. The stress distribution around the vertex with singularity can
be calculated using BEM and FEM. However, when a joint is made of materials yielding a complex
number or several real numbers of the order of singularity, it is di�cult to estimate the orders of stress

Fig. 1. Stress singularity lines and vertex at the intersection of side free-surfaces with interface in a three-dimensional joint.
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singularity from the stress distribution. Once we know every value of the order of stress singularity, we
can estimate a stress intensity factor at the vertex of the joint from the stress distribution obtained by
FEM or BEM, taking the stress singularity into consideration in an interpolation function.
Furthermore, when the order of stress singularity is arranged on Dundurs' parameters plane, it is very
useful to estimate the stress intensity factor for various combinations of materials. Hence, we will
examine the order of stress singularity for several con®gurations of joints. In this study, the order of
stress singularity at a vertex in a rectangular parallelepiped joint is ®rst investigated and then plotted on
Dundurs' parameters plane (Dundurs, 1969) which is deduced in a three-dimensional stress state.
Graphed results on the planes of Dundurs' parameters for a two-dimensional stress state and those for a
three-dimensional are compared. As a consequence, we will show that the order of singularity in three-
dimensional joints is related with elastic moduli of both materials in a rather complicated way. Here, the
stress distributions for joints with several ®xed angles between two free side surfaces, examined in the
previous paper using BEM, are also investigated using FEM. Finally, we examined a rectangular
parallelepiped block bonded to another block in the cases where one block is displaced on the bonded
plane in the x-direction or x-, y-direction. In this situation, the problem can be simpli®ed by restricting
the vertex such that a 1/8-elastic region is bonded to a half-in®nite elastic region and a quarter-in®nite
region, respectively. These models correspond to the stress singularity at the corner where an electronic
IC is bonded to a base plate.

2. Dundurs' parameters for two- and three-dimensional stress state

Dundurs introduced the well-known parameters (Dundurs, 1969), a±b, utilizing a description of a
stress state in two-dimensional dissimilar materials in the discussion of Bogy's paper. We will later
derive the Dundurs' parameters for three-dimensional dissimilar materials, so we will refer to it as a2D±
b2D adding the subscript 2D to the original Dundurs' parameters. Dundurs' parameters, a2D±b2D, for
two-dimensional dissimilar materials can be expressed using pairs of material properties (G, n )

a2D � m2 ÿm1G
m2 �m1G

b2D �
�m2 ÿ 2� ÿ �m1 ÿ 2�G

m2 �m1G
�3�

where

G � G2

G1
�4�

mi �

8><>:
4�1ÿ ni � for plane strain

4

1� ni
for plane stress

�i � 1, 2� �5�

in which G is the shear modulus and n is Poisson's ratio. The subscripts of these material properties
represent the region of materials; 1 refers to the upper region and 2 the lower region in Fig. 1.

Here, since the mechanical properties for all materials are in the range of G1, G2r0, 0 R n1, n2 R 0.5,
the existence domain of a2D and b2D for two-dimensional stress states is within the boundary enclosed
by four straight lines, as follows
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a2D �21

b2D �

8>><>>:
a2D21

4
for plane strain

3a2D21

8
for plane stress

: �6�

The order of stress singularity in two-dimensional joints and the condition of the disappearance of stress
singularity can be represented on the plane of Dundurs' parameters (Bogy, 1968; 1970; 1971a,b). The
order of stress singularity for two-dimensional dissimilar materials could also be represented consistently
on Dundurs' plane regardless of di�erent combinations of Poisson's ratios and elastic moduli.

As previously mentioned, the region of Dundurs' parameters de®ned for plane stress di�ers from that
for plane strain in two-dimensional joints. Generally, the stress states in three-dimensional joints are
between plane stress and plane strain, and hence, it may not be possible to simply arrange the order of
stress singularity on the plane of Dundurs' parameters a2D±b2D. Therefore, Dundurs' parameters for a
three-dimensional stress state are deduced. Hooke's law for three-dimensional elasticity can be expressed
as

Eij � 1

2G
�sij ÿ n 0skkdij � �i, j � 1, 2, 3�, �7�

where Eij represents a strain component, sij a stress component, Einstein's summation convention is
used, G is transverse elastic modulus, and

n 0 � n
1� n

: �8�

First, three components of normal stress in Eq. (7) are equated with each other assuming an isotropic
stress state.

Ekk � 1ÿ 3n 0

2G
skk � Askk, �9�

where A is referred to as volumetric compliance.
Next, the normal stress components are taken as s22=s33=0 considering a uniaxial stress state

E11 � 1ÿ n 0

2G
s11 � Cs11 �10�

where C is referred to as uniaxial compliance.
Dundurs' parameters, a3D and b3D, for a three-dimensional stress state can be represented by

following the de®nition of Dundurs' parameters, a2D and b2D

a3D � C1 ÿ C2

C1 � C2
� G�1ÿ n 01, � ÿ �1ÿ n 02�

G�1ÿ n 01, � � �1ÿ n 02�
�11�

b3D �
A1 ÿ A2

C1 � C2
� G�1ÿ 3n 01� ÿ �1ÿ 3n 02�

G�1ÿ n 01, � � �1ÿ n 02�
, �12�

where
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Ai � 1ÿ 3n 0i
2Gi

, Ci � 1ÿ n 0i
2Gi

�i � 1, 2� �13�

n 0i �
ni

1� ni
�i � 1, 2�: �14�

The a3D±b3D plane is the domain enclosed by the following four lines, and is shown in Fig. 2

a3D �21, b3D �
a3D21

2
: �15�

This domain is expanded in the b3D-direction in comparison with the plane of two-dimensional
parameters.

3. Method and model for analysis

3.1. Method for analysis

In the previous paper (Koguchi, 1997), the stress ®eld near the vertex of three-dimensional joints was
analyzed by varying several angles of the free surfaces intersecting the interface. BEM specially
developed using Rongved's fundamental solutions (Rongved, 1955) for two-phase materials was used in
that analysis. It was shown that the stress ®eld near the vertex could be expressed by a power-law of the
order of stress singularity. When conventional BEM and FEM are used in a stress analysis, the stress
distributions only under a certain condition are calculated. In this case, it is di�cult for the order of
singularity to be estimated from the stress distribution. Furthermore, a vast memory is required for
accurately analyzing the stress ®elds. It is important for estimating the reliability of real bonded
structures to clarify the di�erence between the order of stress singularity in two-dimensional joints and
that in three-dimensional joints. It is noted that the number of roots yielding a stress singularity in an
eigenequation derived later from the principle of virtual work is occasionally more than two. In such a
case, each root is hard to be distinguished from the other in the stress distribution.

In this paper, FEM formulation using an interpolation function of displacements, considering the

Fig. 2. Plane of three-dimensional Dundurs' parameters, a3D±b3D.

H. Koguchi, T. Muramoto / International Journal of Solids and Structures 37 (2000) 4737±47624742



stress singularity presented by Yamada and Okumura (1981) and Pageau and Biggers (1995) is used to
analyze the order of stress singularity. We can obtain multiple real and complex roots as eigenvalues for
the eigenequation of the displacement vector, and examine the order of stress singularity. We will
describe brie¯y the derivation of the eigenequation. Body forces are not taken into account in our
analysis. A spherical domain with the origin at the vertex with the stress singularity is divided into ®nite
elements, as shown in Fig. 3. The distance, r, from the origin O to an inner point Q of the sphere is
expressed as

r � rr0 � r0

�
1� z
2

� p

, �16�

where p is an unknown characteristic value governing the stress ®eld, r0 represents a radius of the
spherical domain, and ÿ1< z<1.
Taking the displacement at the origin as zero, the discretized displacement vector, ui, at nodes can be

expressed as

ui � r p

24X8
j�1

Hjuij

35, �17�

where Hj represents the serendipity quadratic interpolation function, and uij is the i-component of
displacement at node j.

The strain for the element is expressed using the equation of displacement, and also angles y and f
for spherical coordinates are expressed using the interpolation function as follows:

y �
X8
j�1

Hjyj, f �
X8
j�1

Hjfj: �18�

The following is the eigenequation derived by the principles of virtual work for calculating the

Fig. 3. Finite element geometry and coordinate systems with the origin at the vertex of joints.
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eigenvalue, p

� p2�A� � p�B � � �C ��fU g � 0: �19�
Finally, the eigenequation is modi®ed into a generalized eigenequation, and the eigenvalues, p, are
deduced by solving the equation. One refers to other papers for details (Pageau and Biggers, 1995;
Yamada and Okumura, 1981).

In order to check the validity of the developed program, the order of singularity in a three-
dimensional crack, where the front line intersects perpendicularly with a free surface, was numerically
derived. The same problem was analyzed theoretically by Benthem (1977, 1980), who showed that the
order of singularity varies with Poisson's ratio. The domain for analysis is semispherical, and a three-
dimensional crack exists on the plane of f=0 degree as shown in Fig. 4(a) and mesh division used in
this analysis is shown in Fig. 4(b) and (c). The relationship between the order of singularity and
Poisson's ratio is shown in Fig. 5. Analysis was performed by varying the mesh size as f� y=308� 308
and 458� 458, which means that the domain for analysis is divided into twelve and eight, respectively, in
the f-direction, and three and two, respectively, in the y-direction. The maximum error in a ®ner mesh
division is less than 2% in comparison with Benthem's result.

Furthermore, we will examine the in¯uence of mesh size and of the number of integration points of
Gauss integration upon the numerical values of order of stress singularity in a joint. A model for
analysis is the joint referred to as model 1 shown in Fig. 6. This model was used in the previous paper
(Koguchi, 1997) and the order of singularity for the model was investigated using BEM. Mechanical
properties of the joint used in the analysis were described as follows. Young's moduli of material 1 and
2 are 100 GPa and 500 GPa, and Poisson's ratios are 0.37 and 0.25, respectively. The order of stress
singularity estimated from the slope of plotted line of stress distribution in a log-log scale was ÿ0.208,
which obtained by applying least square method for the stress distribution in r/L<6.5� 10ÿ5. Here, the
width of joint is adapted as L (=10 mm). The order of stress singularity obtained in the present
numerical method is shown in Figs. 7 and 8. Fig. 7 represents the variation of the order of singularity
with the number of integration points. In the analysis, the mesh size is ®xed as f � y=22.58 � 22.58.
The value of order of singularity increases from ÿ0.27069 to ÿ0.2076 with increasing the number of
integration points. The error of FEM against BEM is less than 0.2%. Fig. 8 shows the variation of the
order of singularity with decrease of angle of an element. The order of singularity increases up to
ÿ0.2081 with decreasing the mesh size. We can say that the results of FEM are fairly agreed with that
of BEM. In the model 1, the singular ®eld with the order of ÿ0.208 is dominant within r/L < 6.5 �
10ÿ5. FEM formulation used here is useful for calculating easily the order of singularity by solving the
eigenequation.

3.2. Models of three-dimensional analysis

Fig. 6 shown before represents models for joints used in the analysis. Model 1 is the joint of the
reference con®guration and of angles c1=c2=c3=c4=c=908 (see Fig. 1). A joint varied with a vertex
angle between two free side surfaces holding the relationship of c1=c2=c3=c4=908 is referred to as
model 2. The joints of the same con®gurations, models 1 and 2, were used in the previous paper, but the
order of singularity was not examined precisely for various combinations of material properties. In this
paper, the planes of a2D±b2D and a3D±b3D are constructed by conducting the analysis for many
combinations of materials and compared with each other. Joints, which a rectangular parallelepiped
block is bonded with the quarter (model 3) and the half (model 4) regions with di�erent mechanical
properties, are furthermore investigated. The results for three-dimensional joints are compared with the
results for two-dimensional joints, which have the same cross section as three-dimensional joints.
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Furthermore, when two rectangular parallelepiped blocks are bonded to each other, it is di�cult to
accurately adjust the free side surfaces. These models demonstrate the situation where the block moves
in a parallel direction to their interfaces. Several roots exhibiting the stress singularity occur in models 3
and 4, and hence the number of roots and their values are investigated for the ratio of Young's modulus
of materials.

Fig. 4. A three-dimensional crack in a half-in®nite elastic region. (a) Coordinate systems in the analysis, (b) mesh division of region

for analysis, and (c) mesh division on y±f coordinates system.
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Fig. 5. The relationship between the order of stress singularity and Poisson's ratio.

Fig. 6. Con®guration of joints for analyses. Model 1 (c1=c2=c3=c4=c=908), model 2 (c1=c2=c3=c4=908, and c is vari-

able), model 3 (c1=c3=c=908, c2=c4=1808) and model 4 (c1=c2=c3=c=908, and c4=1808).
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3.3. Procedure for analysis

Many combinations of materials yielding the same value of Dundurs' parameters generally exist.
However, the material properties used in the numerical analysis need to be determined in order to
appropriately map the contour of the order of stress singularity. Hence, Young's modulus and Poisson's
ratio, E1 and n1, of material 1 are ®xed, then E2 and n2 of material 2 are determined for the given

Fig. 7. Convergence of l for model 1 against the number of Gauss integration points.

Fig. 8. Variation of the order of stress singularity with decrease of angle of an element.
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Dundurs' parameters, a2D and b2D, by

E2 � 2G1�1� n2�
k

�20�

n2 �

8>><>>:
1ÿ m2

4
for plane strain

4

m2
ÿ 1 for plane stress

, �21�

where

G1 � E1

2�1� n1� �22�

k � 1ÿ a2D � a2Dm1 ÿ b2Dm1

1ÿ a2D

�23�

m2 � m1�a2D � 1�
1ÿ a2D � a2Dm1 ÿ b2Dm1

: �24�

Here, the Dundurs' parameters for two-dimensional stress states are employed to compare the contour
map of the order of stress singularity for two-dimensional joints and three-dimensional joints. When
material properties are determined using a2D and b2D, it is noted that unusual values of material
properties, n2 < 0, n2> 0.5 and G2 < 0, are sometimes obtained. So, the range of a2D±b2D employed for
analysis is determined by Poisson's ratio of material 1 in this case. Hence, we carry out analyses for
several values of n1.

4. Results and discussion

4.1. The contour map of the order of stress singularity in model 1

Mesh division for model 1 is shown in Fig. 9. This model is composed of two 1/8-spheres with
di�erent properties. Mechanical properties for material 1 in the analysis were ®xed at 206.0 GPa for E1

and 0.1, 0.2, 0.3, 0.4 for n1. Then, E2 and n2 were determined by using Eqs. (20)±(24), which can apply
to any value of a2D and b2D.

The order of stress singularity in two-dimensional joints with rectangular vertex angles was examined
by a two-dimensional FEM formulated in the same manner as the three-dimensional FEM. The zero-
boundary of singularity in two-dimensional joints for model 1 is represented by two lines, a2D=0 and
b2D=a2D/2, regardless of Poisson's ratio. In this study, the zero-boundary of singularity in three-
dimensional joints was examined precisely in the regions b R 0 near a2D=0 and a2Dr0 near b2D=a2D/
2. For instance, the point yielding the exact value for zero-singularity in three-dimensional joints was
examined by varying the value of a2D while holding b2D at a ®xed value. Furthermore, the loci of the
root of characteristic equations for the order of stress singularity, 0.9, 0.8, and so on, are investigated in
the same manner locating the zero-boundary of stress singularity. This procedure was repeated until the
order of stress singularity agreed with a ®xed value out to three digits. Fig. 10 shows the loci of the
®xed order of stress singularity for Poisson's ratio, n1=0.4, in two- and three-dimensional joints on the
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a2D±b2D plane. It is representative of the loci of the other Poisson's ratio which are similar to each
other. The bold solid line, b2D=a2D/2, shows the zero-boundary of singularity in two-dimensional
joints. The results (open symbols) plotted in this ®gure show the order of two-dimensional joints
obtained by FEM. When the loci of a two-dimensional analysis are compared with those of a three-
dimensional analysis with the same value of order, for instance l=ÿ0.3, the loci of three-dimensional
joints appear on a curve above the loci of two-dimensional joints. This indicates that a higher

Fig. 9. Typical model of joint of model 1 and mesh division.

Fig. 10. The loci on the a2D±b2D plane of the order of stress singularity for two- and three-dimensional joints.
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singularity occurs in three-dimensional joints than in two-dimensional joints, when the combinations of
material properties have the same (a2D, b2D). Furthermore, we can see from this ®gure that the zero-
boundary of singularity in three-dimensional joints is not very di�erent from that in two-dimensional
joints.

Dependency of Poisson's ratio of the order of singularity is examined for various Poisson's ratios, and
the loci of order of singularity on the a3D±b3D plane for n1=0.1 and 0.4 are both shown in Fig. 11. It is
found that the dependency of Poisson's ratio is fairly small on the a3D±b3D plane and disappears near
b3D=a3D. It is suggested from Fig. 11 that the zero-boundary of singularity exits on the lines b3D=a3D
and near a3D=0.0, which corresponds to the zero-boundary for two-dimensional joints. The zero-
boundaries of singularity for n1=0.4 and 0.1 are identical, although the loci for the same order of
singularity shifts more to the right in n1=0.1 than in n1=0.4. More precise studies are necessary to
determine the dependency of Poisson's ratio near a3D=0.0. The zero-boundary of singularity on
b3D=a3D does not vary with Poisson's ratio, conversely the zero-boundary of singularity near a3D=0.0
is more likely to move with Poisson's ratio.

4.2. The contour plot of the order of stress singularity in model 2

In the previous paper (Koguchi, 1997), we examined the in¯uence of varying the angle of c (see
Fig. 1) on the order of singularity at the vertex between two free side surfaces in three-dimensional
joints. First, the variation of the order of singularity with the angle c, namely, the order of singularity
for joints with the angles, c=458, 608, 908, 1208 and 1508 holding the angles of c1=c2=c3=c4=908 is
investigated and compared with the results obtained by BEM (Koguchi, 1997). The results of FEM and
BEM are shown in Table 1. The values of BEM were obtained by approximating the stress distribution
within r/L < 10ÿ3 using least square method. Where r is the distance from the vertex with singularity,

Fig. 11. The loci on the a3D±b3D plane of the order of stress singularity in three-dimensional joints for various Poisson's ratios of

material 1.
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and L is a representative length of joint. Here, the width of joint is taken as L(=10 mm). FEM

calculation was carried out under the condition that the number of integration points was 20 and the

mesh size of element was f � y=22.58 � 22.58. The maximum error of results of FEM against BEM is

about 2% at the apex angle of 608. Fig. 12 shows the comparison of FEM and BEM for the

relationship of the ratio of l to lplane stress against lplane strain. Solid symbols represent the results for

BEM, which is already reported in the previous paper. Both results are agreed with each other.

Next, the variation of the order of singularity with the angle c, namely, the order of singularity for

joints with the angles, c=22.58, 458, 67.58, 908, 112.58 and 1358 holding the angles of

c1=c2=c3=c4=908 is investigated on the a3D±b3D plane. The angles of element per mesh division are

ordinarily f � y=22.58 � 22.58. Furthermore, in order to investigate the e�ect of the angle of element

on the order of singularity, an analysis for the angle of element being half that of the ordinary angle

was performed, since the decrease of the vertex angle, c, causes the reduction of the number of

elements. The numbers of elements and mesh divisions used in the analyses are shown in Table 2.

Young's modulus and Poisson's ratio for material 1 were taken as E1=206.0 GPa and n1=0.3,

respectively. Mechanical properties for material 2 were determined as mentioned previously.

The loci on the a2D±b2D plane for the joints with vertex angles c smaller than 908 are presented in

Fig. 13. The loci of order of singularity shifts to the left as the vertex angle c decreases. This suggests

that the order of singularity becomes larger when the angle c decreases. The larger values of the order

of singularity, e.g. the loci for l=ÿ0.4 and ÿ0.3, shift more than those for a smaller value, e.g.

l=ÿ0.1, with the variation of the angle c. The loci for the angles c=22.58 and 458 show that there is

only a slight in¯uence on the order of singularity by these values of the angle c. But, the in¯uence of

the angle c becomes obvious over c=458. The zero-boundary of singularity on b2D=a2D/2 shifts very

slightly, even if the vertex angle c varies, although the zero-boundary near a2D=0 moves in the

direction of a negative value of a with the decreasing angle of c.
The loci of order of singularity in joints with the angle, c=22.58, are shown in Fig. 14, where the

analysis was performed employing a ®ner mesh division to examine the accuracy of the calculation. The

di�erence of loci for f � y=258 � 258 and 12.58 � 12.58 was very small, and dependency of the loci on

the mesh division could not be found clearly in our calculation.

The loci of the order of singularity for the angles, c=90.08, 112.58, and 135.08, are represented in

Fig. 15, and each locus shifts slightly down to the right with the increasing angle of c. This suggests

that the order of singularity decreases with the increasing angle of c. When the Dundurs' parameters

Table 1

A comparison of the order of singularity obtained from BEM and FEM for model 2

E1 n1 E2 n2 458 608 908 1208 1508

100 0.15 27.5 0.422 FEM 0.191657 0.186849 0.175582 0.163493 0.152194

BEM 0.18939 0.182546 0.176174 0.163666 0.151984

100 0.2 19.99 0.450 FEM 0.246698 0.24196 0.230637 0.217742 0.20465

BEM 0.245938 0.239008 0.23100 0.218064 0.204974

100 0.3 14.26 0.475 FEM 0.298073 0.29407 0.284162 0.271855 0.25790

BEM 0.298078 0.290972 0.284988 0.272085 0.25806

100 0.15 8.34 0.477 FEM 0.363256 0.357717 0.34456 0.329233 0.312431

BEM 0.364056 0.355971 0.345114 0.330099 0.313005

100 0.1 3.96 0.488 FEM 0.420023 0.414556 0.401456 0.385623 0.36689

BEM 0.42201 0.41202 0.40203 0.3861 0.36693
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(a2D, b2D) are ®xed, the in¯uence of the angle, c, on singularity becomes large when a combination of
materials generating a large order of singularity is used.

The loci of the order of singularity for c=458, 908, and 1358 are shown in Fig. 16. The loci on the
a3D±b3D plane are similar to that on the a2D±b2D plane, i.e. they shift upwards to the left with the
decreasing angle of c, and shift downwards to the right with the increasing angle of c. Comparing each
locus for the same combination of materials, the order of singularity in a smaller vertex angle, c, is
larger than that in a larger vertex angle c. Apparently, the locus for a material combination generating
higher stress singularity shifts considerably. The zero-boundary of singularity on b3D=a3D moves
slightly with the variation of the angle c, however, the zero-boundary of singularity near a3D=0 shifts
to a3D=1 and ÿ1 for the larger and smaller angles, c, than 908, respectively.

Fig. 12. A comparison of FEM and BEM for the relationship of the ratio of l to lplane stress against lplane strain.

Table 2

Number of elements and nodes

Vertex angle c Number of elements Number of nodes

22.58 8 (32) 43 (133)

45.08 16 69

67.58 24 95

90.08 32 121

112.58 40 147

135.08 48 173
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4.3. Comparison of the order of stress singularity in models 1, 3 and 4

Models 3 and 4 (see Fig. 6) represent joints where one of the two blocks initially agreeing with every
free side-surface is displaced on the bonded plane in the x-direction and the x-, y-directions, respectively.
The 1/8±1/2 and 1/8±1/4 three-dimensional joints corresponding to the joints with edge angles p/2±p/2
and p/2±p in two-dimensional dissimilar materials are analyzed here. It is di�cult to map the loci of the
order of singularity for these joints on Dundurs' parameters plane, since plural roots yielding stress
singularity usually occur in these joints. Hence, in this section, the order of singularity is examined
against E1/E2, a ratio of rigidity of material 1 to material 2, by varying Poisson's ratio for material 2.
Speci®cally, Young's modulus and Poisson's ratio of material 1 were ®xed as E1=200.0 GPa and
n1=0.3, respectively. Then, Poisson's ratio of material 2 was taken as 0.0, 0.1, 0.2, 0.3, 0.4 and 0.48, and
Young's modulus of material 2 was determined using the method described in the previous section 3.3.

Fig. 17 shows an example of a mesh division for the 1/8±1/4 joint, where the size of an element is f�
y=22.58� 22.58, the number of elements is 48, and the number of nodes is 177. In the 1/8±1/8 joint, the
same element size as in the 1/8±1/4 joint is used, and the numbers of elements and nodes are 32 and
121, respectively. In the 1/8±1/2 joint, the numbers of elements and nodes are 45 and 165, respectively.

The order of singularity of model 1 is demonstrated against E1/E2 for n2=0.0, 0.3, and 0.48 in Fig. 18.
The dashed line in the ®gures represents the order of singularity for two-dimensional joints with the
edge angles, p/2±p/2. The ®gures show the variation of order along the line connecting a point on
a2D=ÿ1 with a point on a2D=1 on Dundurs' parameters plane. The results for two- and three-
dimensional joints for n2=0.0 are shown in Fig. 6(a), where stress singularity occurs at E1/E2 < 1.0, and
a stronger singularity is generated in three-dimensional joints than in two-dimensional joints. The order
of singularity in two- and three-dimensional joints has a similar variation against E1/E2. With increasing

Fig. 13. The loci on the a2D±b2D plane of the order of stress singularity for the joints withvertex angles c smaller than 908.
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n2, stress singularity occurs also at E1/E2 > 1.0, and the variation of order against E1/E2 in three-
dimensional joints is similar to that in two-dimensional joints. It is observed from these ®gures that the
order of singularity for three-dimensional joints is 1.3 times larger than that for two-dimensional joints
in the range of larger and smaller ratios of rigidity.

The order of singularity for model 3 is shown against E1/E2 for n2=0.0, 0.3, and 0.48 in Fig. 19. Bold
solid and dashed lines show real and imaginary values of the order of singularity for three-dimensional
joints, respectively. The order of singularity for two-dimensional joints with the edge angles, p/2±p, is
also represented by thin solid and thin dashed lines in this ®gure. In this joint, the order of singularity
does not vary symmetrically with respect to E1/E2=1, even if n1 is equal to n2, since the apex angles of
material 1 and 2 are di�erent from each other.

When n2 is equal to 0.0, two roots generate the stress singularity in two-dimensional joints in E1/E2 <
6. As the value of E1/E2 increases, the two roots meet around E1/E2=6, and two complex roots,
including a conjugate complex root, are generated at E1/E2 > 6. The order of singularity in three-
dimensional joints varies against E1/E2 in a similar manner to two-dimensional joints. Three real roots
exist in E1/E2 < 30 and two of them intersect around E1/E2=30. One real root and two complex roots,
including a conjugate complex root, are generated at E1/E2> 30.

With increasing Poisson's ratio of material 2, the transition point from two real roots to complex
roots shifts to a larger value of E1/E2 and the imaginary values of their complex roots decrease in both
joints. The imaginary value of the order of singularity tends to decrease more signi®cantly in three-
dimensional joints than in two-dimensional joints. In the case of n2=0.48, three di�erent values for the

Fig. 14. The loci on the a2D±b2D plane of order of singularity in joints with the angle c=22.58 for di�erent mesh divisions, f �
y=258� 258 and 12.58� 12.58.
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Fig. 15. The loci on the a2D±b2D plane of the order of singularity for the angles, c=90.08, 112.58, and 135.08.

Fig. 16. The loci on the a3D±b3D plane of the order of singularity for c=458, 908, and 1358.
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Fig. 17. An example of a mesh division for the 1/8±1/4 joint, where the size of element is f� y=22.58� 22.58.
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Fig. 18. Relationship between the order of stress singularity and Young's moduli ratio E1/E2 for the 1/8±1/8 joint. Comparison of

the order of stress singularity for two-dimensional joints and three-dimensional joints. (a) n1=0.3, n2=0.0; (b) n1=0.3, n2=0.3; (c)

n1=0.3, n2=0.48.
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Fig. 19. Relationship between the order of stress singularity and Young's moduli ratio E1/E2 for the 1/8±1/2 joint. Comparison of

the order of stress singularity for two-dimensional joints and three-dimensional joints. (a) n1=0.3, n2=0.0; (b) n1=0.3, n2=0.3; (c)

n1=0.3, n2=0.48.
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Fig. 20. Relationship between the order of stress singularity and Young's moduli ratio E1/E2 for the 1/8±1/4 joint. (a) n1=0.3,

n2=0.0; (b) n1=0.3, n2=0.2; (c) n1=0.3, n2=0.3; (d) n1=0.3, n2=0.48.
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order of singularity exist over the whole range of E1/E2 in our calculation and the largest value of the
order of stress singularity is about ÿ0.75.

The order of singularity for model 4 is shown against E1/E2 for n2=0.0, 0.2, 0.3, and 0.48 in Fig. 20.
The order of singularity for model 1 is also shown in Fig. 20(c) and (d) along with the results for three-
dimensional joints. There are no two-dimensional joints corresponding to model 4, since model 4 can be
viewed as a joint with a di�erent con®guration depending on the directional perspective. In the case of a
small value of n2, three real roots and one complex root yielding singularity exist. As the value of n2
increases, the imaginary value and the real values of the order of singularity for a complex root
decrease. The number of roots yielding singularity is two in the case of n2=0.3. In the case of n2=0.48,
Fig. 20(d) shows that the order of singularity ¯uctuates in an oscillatory manner around E1/E2=1. This
distinct variation can be explained by the di�erence in Poisson's ratio as follows. When Poisson's ratio
of material 2 is small, region 2 shrinks little and expands by the force applied by region 1; thus it
behaves like a semi-elastic region compared to region 1. On the contrary, when n2 increases, region 2
expands and shrinks in the bonded plane by force acting on it from region 1, and behaves like the one
in model 1. Hence, in the case of a large E1/E2, i.e. small value of E2, the above-mentioned things
become noticeable. A complicated variation of the order of singularity around E1/E2=1 with large n2
must be attributed to the disappearance of the stress singularity in model 1.

When two stress singularity lines with di�erent values of order meet as in model 4, the order of
singularity varies against E1/E2 in a manner similar to model 3 with n2< 0.3 and model 1 with n2> 0.3.
The order of singularity for model 1 and 3 varies against E1/E2 in a manner similar to two-dimensional
joints with the cross section of three-dimensional joints. That is to say, the order of singularity at a
vertex where two stress singularity lines with di�erent values of order meet is in¯uenced largely by either
stress singularity line depending on the material combination of joints.

5. Conclusion

We investigated the order of singularity at the vertex of three-dimensional dissimilar materials using
the FEM, taking the stress singularity ®eld into consideration in an interpolation function. In this
investigation, Dundurs' parameters, a3D±b3D, in three-dimensional stress states were introduced, and
contour maps of the order of singularity for two- and three-dimensional joints were mapped on a a3D±
b3D plane and an ordinary a2D±b2D plane. As a result of the comparison of the order of singularity for
three-dimensional joints and two-dimensional joints on the same plane, the order of singularity in three-
dimensional joints is larger than that in two-dimensional joints, when the values of a2D and b2D are
®xed. However, the zero-boundary of stress singularity in both joints is almost identical. When the loci
of the order of singularity were mapped on the a3D±b3D plane, the zero-boundary of singularity was
almost independent of Poisson's ratio, although the loci of the order of singularity depended slightly on
Poisson's ratio, except at the zero-boundary. The order of singularity was a�ected also by the variation
of the vertex angle between two free side-surfaces. The values of the order of stress singularity obtained
by solving an eigenequation based on a FEM formulation are fairly agreed with those obtained from
the slope of stress distribution derived using BEM. The order of singularity increases with the decreasing
vertex angle. In particular, the in¯uence of the vertex angle upon the order of singularity becomes
noticeable in wider vertex angles.

The order of singularity in 1/8±1/4 and 1/8±1/2 joints was examined against E1/E2 at several values of
Poisson's ratio. In smaller values of Poisson's ratio of material 2, a complex root yielding a singularity
occurred in both joints. At larger values of Poisson's ratio of material 2, two or three real roots yielding
the order of singularity are generated. In particular, in the case of 1/8±1/4 joint, the order of singularity
¯uctuated in an oscillatory manner around E1/E2=1, and it became similar to the behavior of
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singularity of 1/8±1/8 joint in the range of E1/E2 > 1. The order of singularity at the vertex where two
stress singularity lines with di�erent orders meet is a�ected signi®cantly by either of the stress singularity
lines depending on the con®guration of the side surfaces and the material combinations.
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